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Abstract. We analyse the nonlinear Schriidinger model (the one-dimensional Bose gas) by 
means of conformal held theory in conjunction with a newly developed cutoff procedure. 
This makes it possible to obtain exact expressions for current correlators in the model. A 
number of new results are presented, including the expression for the two-point current 
comelator on a finite-sire strip and the general rr-point current correlator on the plane. All 
these results have the full time dependence and are presented to order l/g, where g is the 
strength of the repulsive &function interaction. 

Conformal field theory [ l ]  has become one of the most actively researched areas of 
theoretical physics in recent years. Its connections to several branches of physics and 
mathematics have been discovered. We will make extensive use of the predictions of 
conformal field theory about the finite-size effects [2] in an exactly integrable system, 
the repulsive 8-function Bose gas [3], also called the nonlinear Schrodinger model 
(NLSM) .  It has been known for some time that the finite-size corrections to the ground 
and excited state energies immediately give us the asymptotic long-distance behaviour 
of two- and three-point correlators. These are properties of the conformal fixed point. 
However, to extend this result to a systematic asymptotic long-distance expansion (or, 
more generally, to obtain the exact expression for correlators) requires the use of a 
cutoff (necessitated by irrelevant operators) and the results become cutoff dependent. 
Thus, it is crucial to choose the 'correct' cutoff scheme when dealing with irrelevant 
operators. This has become possible only recently for the NLS model [4]. 

The plan of this paper is as follows. First, we provide a brief introduction to the 
thermodynamics of the NLS model. Then, we present a summary of the novel cutoff 
scheme followed by the main results. We end with some conclusions and a discussion. 

The NLSM is defined as a one-dimensional finite-density Bose gas with repulsive 
pairwise &function interactions. The second quantized Hamiltonian is 

H = loL dx(d$'aJI + g :JI+$$+t,b: -p$+JI) (1) 

where p is the chemical potential, g is the strength of the 8-function interaction and 
L is the size of the system. The fields JI, JI' are characterized by standard commutation 
relations: 

[Jib), *+(Y) l=  s ( x - Y )  [JI,$l=[*+,$+I=o. (2) 
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This model is exactly integrable and was solved by  Lieb and Liniger [31. The eigenstates 
for a system of N particles have the characteristic Bethe ansatz [3,5] form 

A Berkovich and G Murthy 

B(X)lO) = 0. (4) 

Here, the Ai (the momenta) are not arbitrary but are constrained by the following 
transcendental equations: 

For this model all the roots A, are real and distinct. 

an integral equation for the density of roots p ( A )  for the ground state 
In the thermodynamic limit (N+oo; L+m;  N [ L =  D is constant) one can obtain 

where 

2 g  K(A)=- 
A'+g2 

and q is the Fermi momentum which is implicitly defined by 

~ ( . t f ~ ) = + q .  (7) 

The energy of the ground state can now be presented as 

Eo= I' dA p(A)(A2-*). (8) 
- q  

Of course, this analysis can be carried out for excited states as well. Let us proceed 
to the new cutoff scheme. 

We will need some of the terminology of conformal field theory in order to 
summarize the new cutoff scheme. 

It has been shown [6] that the long-distance asymptotic behaviour of the NLSM is 
related via finite-size corrections to the c = 1 Virasoro algebra: 

The complete set of critical exponents was shown to be 

t2 
r2x,+-+ m 

4% 
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where r, I and m are integers and x, depends on the velocity of sound U, and the 
density via 

U, xp=- 
8 TD 

This information can be determined solely from the conformal fixed-point Hamiltonian. 
To be more explicit, the total Hamiltonian for the system can be expressed as 

r i  
H = Hcn+x ai J Oj(x) dx 

i o  

where 

and 0, are relevant operators (dimension ~, > 2). 
As pointed out in the introduction, before proceeding to do  a systematic perturbation 

theory in the irrelevant operators about the conformal fixed point, one needs to choose 
a cutoff scheme to eliminate infinities. 

Since the novel cutoff scheme has been described in some detail elsewhere [4], let 
us content ourselves with a precis. There are two main components: 

(i) The new scheme takes the Fermi sea very serously. That is, in the sum over 
states that occurs repeatedly in perturbation theory, hole states are allowed to exist 
only inside the Fermi sea and particle states only outside. This has the effect of coupling 
the left and right movers. To see the force of this restriction we note that in conformal 
field theory the right and left movers are totally disconnected and hole states can go 
all the way to -m while particle states go all the way to +m. 

(ii) If an intermediate state has more than one particle-hole pair, then it could he 
represented as a number of different conformal states, depending on which holes we 
choose to pair with right-moving particles and which with left. The cutoff scheme 
prescribes that the antisymmetric combination of all possible conformal states is to be 
taken as the ‘true’ Bethe ansatz state. 

There is a third component to the scheme which prescribes the order of summation 
for certain divergent sums, but since they occur only in the energies and never in the 
non-simultaneous correlation functions, we shall not be concerned with it here. One 
of the results to emerge from this treatment is that irrelevant operators of every 
dimension affect all the terms of the asymptotic long-distance expansion of the corre- 
lators. What saves us here is the existence of another small parameter ( l fg ) .  We take 
the unperturbed theory to he the one at g = m, which has the Hamiltonian 

H,=D jOLdx( L 2 + L - , + -  0,) 
3 TD 

where 

1 
F ‘Q-4 --J$,F “-4 --!-;$ xp = a  (free fermions) (13) 
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and 4 is the fundamental Gaussian field of the c = 1 conformal theory. 0, commutes 
with the conformal field theory Hamiltonian. The eigenstates of H ,  are precisely the 
Bethe ansatz states at g = m [7]. 

We will refrain from expressing the perturbation to this Hamiltonian ( (1 /g )6 )  to 
order l / g  in terms of conformal fields. Instead we will present its off-diagonal matrix 
element between any two Bethe ansatz states, since that is what will be used to obtain 
the correlators. 6 changes two Bethe ansatz roots of Hamiltonian (13)  (say from A , ,  
A, to A,, A&). Then the matrix element is (up to a sign) 
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4 
( A d \ , l 6 l A , h 2 ) = * ~  A , d 3 4 .  (14) 

FortheorderingA,>A2; A , >  h4;  A , + h 2 =  h,+A,thesignisdeterminedbythenumber 
of roots crossed in the transition. 

Another miraculous fact which is crucial in computing the current correlators is 
the definition of the current: 

1 
j =  JI'J, = D+- (F,,,+F,o)18=m. 271 (15)  

We must emphasize that the current j at any g is identical up  to a constant to the 
conformal field 1 / 2 4  F,,+ FIO) at  g = W. The non-vanishing matrix elements of j ( x )  
can he described as follows. The operator j ( x )  can change the position of at most one 
Bethe ansatz rooti 

1 
(A21j(x)lAl) = Dc?,,,~,*, e'*itx. (16) 

Once again the sign in the formula above is determined by the number of roots crossed 
in the transition. 

We are now ready to present the results. 
We will exhibit two main results. First, we will present the form of the time- 

dependent two-point current correlator on a strip of width L and then we will go on 
to the general ansatz for the time-dependent N-point current correlator, this time in 
the infinite plane. Both these results are exact to order l/g. Of course, one can always 
obtain the two-point correlator in the plane either as the L+ m limit of the finite-size 
result or, more simply, by putting N = 2  in the general result. 

The two-point current correlator on the strip is obtained by standard perturbation 
theory using (14) and (16): 

* T l ! 2 X  i< l2dLPl l ; - l ; l  cos- e 8 
+T L g l l l l ) ~ N ~ - ~ ~ / 2  C l l ~ l , l l ~ l ~ l N o - l ~ / 2  L 

(17) 

where all the sums are over integers (half-integers) for N odd (even) and in the second 
sum I, = I, is omitted. 
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We note that the last term in the exponential of the first term disappears in the 
L + m  limit. This is a finite-size effect and will make itself felt near the edges of the 
strip. In the .L+ a limit the sums go over into integrals and the I, # l, exclusion 
manifests itself as a principal value prescription. 

Let us now write down the form of the general N-point current correlator: 

W1, fd.. .Ax , ,  fN)) 

where 

o [ 8 ( i ~ k ) B ( j ~ k ) B ( A : > q 2 ) 8 ( A \ : > q z )  

+e(ic k ) e ( j ~ k ) e ( A : < q Z ) O ( A : < q 2 )  

- e ( i < k ) e ( j <  k)e(A:< q2)e(A:> q2)  

- ~ ( i >  k ) e ( j >  k )e (A:>  9 2 ) O ( A : < q 2 ) } .  (19) 

In the above a is a dummy variable and the P in front of the integral in the definition 
of K j  denotes a principal value prescription. All the integrals are convergent when the 
time separations are non-zero, but extra care must be taken for simultaneous correlators: 

C j W .  . .Axn):) 

Here E ( X )  is the sign function, and 

The full correlator can be restored from the normal ordered one above by means 
of commutation relation [2]. Note that the expression (20) is similar to the one obtained 
by means of the quantum inverse scattering method [8]. Minor discrepancies can be 
attributed to typographical errors. 

There seems to be no obstruction to carrying out this procedure to higher order in 
I/g. One would have to deal with operators that would change n Bethe ansatz roots 
at a time. The convergence of the series in I / g  is an interesting open question which 
we intend to pursue. 

It would also be interesting to generalize this procedure to models with a marginally 
irrelevant operator, for example the xxx model and also for minimal models, where 
there seems to be no small parameter which would play the role of l/g in the NLSM. 
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